
NAG Fortran Library Routine Document

D03PFF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

D03PFF integrates a system of linear or nonlinear convection-diffusion equations in one space dimension,
with optional source terms. The system must be posed in conservative form. Convection terms are
discretised using a sophisticated upwind scheme involving a user-supplied numerical flux function based
on the solution of a Riemann problem at each mesh point. The method of lines is employed to reduce the
PDEs to a system of ordinary differential equations (ODEs), and the resulting system is solved using a
backward differentiation formula (BDF) method.

2 Specification

SUBROUTINE D03PFF(NPDE, TS, TOUT, PDEDEF, NUMFLX, BNDARY, U, NPTS, X,
1 ACC, TSMAX, W, NW, IW, NIW, ITASK, ITRACE, IND, IFAIL)

INTEGER NPDE, NPTS, NW, IW(NIW), NIW, ITASK, ITRACE, IND,
1 IFAIL
real TS, TOUT, U(NPDE,NPTS), X(NPTS), ACC(2), TSMAX, W(NW)
EXTERNAL PDEDEF, NUMFLX, BNDARY

3 Description

D03PFF integrates the system of convection-diffusion equations in conservative form:

XNPDE
j¼1

Pi;j

@Uj

@t
þ @Fi

@x
¼ Ci

@Di

@x
þ Si; ð1Þ

or the hyperbolic convection-only system:

@Ui

@t
þ @Fi

@x
¼ 0; ð2Þ

for i ¼ 1; 2; . . . ;NPDE; a � x � b; t � t0; where the vector U is the set of solution values

Uðx; tÞ ¼ ½U1ðx; tÞ; . . . ; UNPDEðx; tÞ�T :
The functions Pi;j, Fi, Ci and Si depend on x, t and U ; and Di depends on x, t, U and Ux, where Ux is

the spatial derivative of U . Note that Pi;j, Fi, Ci and Si must not depend on any space derivatives; and

none of the functions may depend on time derivatives. In terms of conservation laws, Fi, Ci@Di=@x and
Si are the convective flux, diffusion and source terms respectively.

The integration in time is from t0 to tout, over the space interval a � x � b, where a ¼ x1 and b ¼ xNPTS

are the leftmost and rightmost points of a user-defined mesh x1; x2; . . . ; xNPTS. The initial values of the
functions Uðx; tÞ must be given at t ¼ t0.

The PDEs are approximated by a system of ODEs in time for the values of Ui at mesh points using a
spatial discretisation method similar to the central-difference scheme used in D03PCF=D03PCA,
D03PHF=D03PHA and D03PPF=D03PPA, but with the flux Fi replaced by a numerical flux, which is
a representation of the flux taking into account the direction of the flow of information at that point (i.e.,
the direction of the characteristics). Simple central differencing of the numerical flux then becomes a
sophisticated upwind scheme in which the correct direction of upwinding is automatically achieved.

The numerical flux vector, F̂Fi say, must be calculated by the user in terms of the left and right values of the
solution vector U (denoted by UL and UR respectively), at each mid-point of the mesh
xj�1=2 ¼ ðxj�1 þ xjÞ=2 for j ¼ 2; 3; . . . ;NPTS. The left and right values are calculated by D03PFF
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from two adjacent mesh points using a standard upwind technique combined with a Van Leer slope-limiter

(see LeVeque (1990)). The physically correct value for F̂Fi is derived from the solution of the Riemann
problem given by

@Ui

@t
þ @Fi

@y
¼ 0; ð3Þ

where y ¼ x� xj�1=2, i.e., y ¼ 0 corresponds to x ¼ xj�1=2, with discontinuous initial values U ¼ UL for

y < 0 and U ¼ UR for y > 0, using an approximate Riemann solver. This applies for either of the systems
(1) or (2); the numerical flux is independent of the functions Pi;j, Ci, Di and Si. A description of several

approximate Riemann solvers can be found in LeVeque (1990) and Berzins et al. (1989). Roe’s scheme
(Roe (1981)) is perhaps the easiest to understand and use, and a brief summary follows. Consider the
system of PDEs Ut þ Fx ¼ 0 or equivalently Ut þAUx ¼ 0. Provided the system is linear in U , i.e., the

Jacobian matrix A does not depend on U , the numerical flux F̂F is given by

F̂F ¼ 1
2
FL þ FRð Þ � 1

2

XNPDE
k¼1

�kj�kjek; ð4Þ

where FL (FR) is the flux F calculated at the left (right) value of U , denoted by UL (UR); the �k are the
eigenvalues of A; the ek are the right eigenvectors of A; and the �k are defined by

UR � UL ¼
XNPDE
k¼1

�kek: ð5Þ

An example is given in Section 9.

If the system is nonlinear, Roe’s scheme requires that a linearized Jacobian is found (see Roe (1981)).

The functions Pi;j, Ci, Di and Si (but not Fi) must be specified in a subroutine PDEDEF supplied by the

user. The numerical flux F̂Fi must be supplied in a separate user-supplied subroutine NUMFLX. For
problems in the form (2), the actual argument D03PFP may be used for PDEDEF (D03PFP is included in
the NAG Fortran Library; however, its name may be implementation-dependent: see the Users’ Note for
your implementation for details). D03PFP sets the matrix with entries Pi;j to the identity matrix, and the

functions Ci, Di and Si to zero.

The boundary condition specification has sufficient flexibility to allow for different types of problems. For
second-order problems i.e., Di depending on Ux, a boundary condition is required for each PDE at both
boundaries for the problem to be well-posed. If there are no second-order terms present, then the
continuous PDE problem generally requires exactly one boundary condition for each PDE, that is NPDE
boundary conditions in total. However, in common with most discretisation schemes for first-order
problems, a numerical boundary condition is required at the other boundary for each PDE. In order to be
consistent with the characteristic directions of the PDE system, the numerical boundary conditions must be
derived from the solution inside the domain in some manner (see below). Both types of boundary
conditions must be supplied by the user, i.e., a total of NPDE conditions at each boundary point.

The position of each boundary condition should be chosen with care. In simple terms, if information is
flowing into the domain then a physical boundary condition is required at that boundary, and a numerical
boundary condition is required at the other boundary. In many cases the boundary conditions are simple,
e.g., for the linear advection equation. In general the user should calculate the characteristics of the PDE
system and specify a physical boundary condition for each of the characteristic variables associated with
incoming characteristics, and a numerical boundary condition for each outgoing characteristic.

A common way of providing numerical boundary conditions is to extrapolate the characteristic variables
from the inside of the domain. Note that only linear extrapolation is allowed in this routine (for greater
flexibility the routine D03PLF should be used). For problems in which the solution is known to be
uniform (in space) towards a boundary during the period of integration then extrapolation is unneccesary;
the numerical boundary condition can be supplied as the known solution at the boundary. Examples can
be found in Section 9.

The boundary conditions must be specified in a subroutine BNDARY (provided by the user) in the form

GL
i ðx; t; UÞ ¼ 0 at x ¼ a; i ¼ 1; 2; :::;NPDE; ð6Þ
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at the left-hand boundary, and

GR
i ðx; t; UÞ ¼ 0 at x ¼ b; i ¼ 1; 2; :::;NPDE; ð7Þ

at the right-hand boundary.

Note that spatial derivatives at the boundary are not passed explicitly to the subroutine BNDARY, but they
can be calculated using values of U at and adjacent to the boundaries if required. However, it should be
noted that instabilities may occur if such one-sided differencing opposes the characteristic direction at the
boundary.

The problem is subject to the following restrictions:

(i) Pi;j, Fi, Ci and Si must not depend on any space derivatives;

(ii) Pi;j, Fi, Ci, Di and Si must not depend on any time derivatives;

(iii) t0 < tout, so that integration is in the forward direction;

(iv) The evaluation of the terms Pi;j, Ci, Di and Si is done by calling the routine PDEDEF at a point

approximately midway between each pair of mesh points in turn. Any discontinuities in these
functions must therefore be at one or more of the mesh points x1; x2; . . . ; xNPTS;

(v) At least one of the functions Pi;j must be non-zero so that there is a time derivative present in the

PDE problem;

In total there are NPDE� NPTS ODEs in the time direction. This system is then integrated forwards in
time using a BDF method.

For further details of the algorithm, see Pennington and Berzins (1994) and the references therein.

4 References

Berzins M, Dew P M and Furzeland R M (1989) Developing software for time-dependent problems using
the method of lines and differential-algebraic integrators Appl. Numer. Math. 5 375–397

Hirsch C (1990) Numerical Computation of Internal and External Flows, Volume 2: Computational
Methods for Inviscid and Viscous Flows John Wiley

LeVeque R J (1990) Numerical Methods for Conservation Laws Birkhäuser Verlag

Pennington S V and Berzins M (1994) New NAG Library software for first-order partial differential
equations ACM Trans. Math. Softw. 20 63–99

Roe P L (1981) Approximate Riemann solvers, parameter vectors, and difference schemes J. Comput.
Phys. 43 357–372

5 Parameters

1: NPDE – INTEGER Input

On entry: the number of PDEs to be solved.

Constraint: NPDE � 1.

2: TS – real Input/Output

On entry: the initial value of the independent variable t.

On exit: the value of t corresponding to the solution values in U. Normally TS ¼ TOUT.

Constraint: TS < TOUT.

3: TOUT – real Input

On entry: the final value of t to which the integration is to be carried out.
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4: PDEDEF – SUBROUTINE, supplied by the user. External Procedure

PDEDEF must evaluate the functions Pi;j, Ci, Di and Si which partially define the system of PDEs.

Pi;j, Ci and Si may depend on x, t and U; Di may depend on x, t, U and Ux. PDEDEF is called

approximately midway between each pair of mesh points in turn by D03PFF. The actual argument
D03PFP may be used for PDEDEF for problems in the form (2) (D03PFP is included in the NAG
Fortran Library; however, its name may be implementation-dependent: see the Users’ Note for your
implementation for details).

Its specification is:

SUBROUTINE PDEDEF(NPDE, T, X, U, UX, P, C, D, S, IRES)

INTEGER NPDE, IRES
real T, X, U(NPDE), UX(NPDE), P(NPDE,NPDE), C(NPDE),

1 D(NPDE), S(NPDE)

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – real Input

On entry: the current value of the independent variable t.

3: X – real Input

On entry: the current value of the space variable x.

4: U(NPDE) – real array Input

On entry: UðiÞ contains the value of the component Uiðx; tÞ, for i ¼ 1; 2; . . . ;NPDE.

5: UX(NPDE) – real array Input

On entry: UXðiÞ contains the value of the component @Uiðx; tÞ=@x, for
i ¼ 1; 2; . . . ;NPDE.

6: P(NPDE,NPDE) – real array Output

On exit: Pði; jÞ must be set to the value of Pi;jðx; t;UÞ, for i; j ¼ 1; 2; . . . ;NPDE.

7: C(NPDE) – real array Output

On exit: CðiÞ must be set to the value of Ciðx; t; UÞ, for i ¼ 1; 2; . . . ;NPDE.

8: D(NPDE) – real array Output

On exit: DðiÞ must be set to the value of Diðx; t; U; UxÞ, for i ¼ 1; 2; . . . ;NPDE.

9: S(NPDE) – real array Output

On exit: SðiÞ must be set to the value of Siðx; t; UÞ, for i ¼ 1; 2; . . . ;NPDE.

10: IRES – INTEGER Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, the user may set IRES to force the
integration routine to take certain actions as described below:

IRES ¼ 2

indicates to the integrator that control should be passed back immediately to the
calling (sub)program with the error indicator set to IFAIL ¼ 6.
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IRES ¼ 3

indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. The user may wish to set IRES ¼ 3 when a
physically meaningless input or output value has been generated. If the user
consecutively sets IRES ¼ 3, then D03PFF returns to the calling (sub)program with
the error indicator set to IFAIL ¼ 4.

PDEDEF must be declared as EXTERNAL in the (sub)program from which D03PFF is called.
Parameters denoted as Input must not be changed by this procedure.

5: NUMFLX – SUBROUTINE, supplied by the user. External Procedure

NUMFLX must supply the numerical flux for each PDE given the left and right values of the
solution vector U. NUMFLX is called approximately midway between each pair of mesh points in
turn by D03PFF.

Its specification is:

SUBROUTINE NUMFLX(NPDE, T, X, ULEFT, URIGHT, FLUX, IRES)

INTEGER NPDE, IRES
real T, X, ULEFT(NPDE), URIGHT(NPDE), FLUX(NPDE)

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – real Input

On entry: the current value of the independent variable t.

3: X – real Input

On entry: the current value of the space variable x.

4: ULEFT(NPDE) – real array Input

On entry: ULEFTðiÞ contains the left value of the component UiðxÞ, for
i ¼ 1; 2; . . . ;NPDE.

5: URIGHT(NPDE) – real array Input

On entry: URIGHTðiÞ contains the right value of the component UiðxÞ, for
i ¼ 1; 2; . . . ;NPDE.

6: FLUX(NPDE) – real array Output

On exit: FLUXðiÞ must be set to the numerical flux F̂Fi, for i ¼ 1; 2; . . . ;NPDE.

7: IRES – INTEGER Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, the user may set IRES to force the
integration routine to take certain actions as described below:

IRES ¼ 2

indicates to the integrator that control should be passed back immediately to the
calling (sub)program with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3

indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. The user may wish to set IRES ¼ 3 when a
physically meaningless input or output value has been generated. If the user
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consecutively sets IRES ¼ 3, then D03PFF returns to the calling (sub)program with
the error indicator set to IFAIL ¼ 4.

NUMFLX must be declared as EXTERNAL in the (sub)program from which D03PFF is called.
Parameters denoted as Input must not be changed by this procedure.

6: BNDARY – SUBROUTINE, supplied by the user. External Procedure

BNDARY must evaluate the functions GL
i and GR

i which describe the physical and numerical
boundary conditions, as given by (6) and (7).

Its specification is:

SUBROUTINE BNDARY(NPDE, NPTS, T, X, U, IBND, G, IRES)

INTEGER NPDE, NPTS, IBND, IRES
real T, X(NPTS), U(NPDE,3), G(NPDE)

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: NPTS – INTEGER Input

On entry: the number of mesh points in the interval ½a; b�.

3: T – real Input

On entry: the current value of the independent variable t.

4: X(NPTS) – real array Input

On entry: the mesh points in the spatial direction. X(1) corresponds to the left-hand
boundary, a, and X(NPTS) corresponds to the right-hand boundary, b.

5: U(NPDE,3) – real array Input

On entry: contains the value of solution components in the boundary region. If
IBND ¼ 0, then Uði; jÞ contains the value of the component Uiðx; tÞ at x ¼ XðjÞ, for
i ¼ 1; 2; . . . ;NPDE; j ¼ 1; 2; 3. If IBND 6¼ 0, then Uði; jÞ contains the value of the
component Uiðx; tÞ at x ¼ XðNPTS� jþ 1Þ, for i ¼ 1; 2; . . . ;NPDE; j ¼ 1; 2; 3.

6: IBND – INTEGER Input

On entry: specifies which boundary conditions are to be evaluated. If IBND ¼ 0, then
BNDARY must evaluate the left-hand boundary condition at x ¼ a. If IBND 6¼ 0, then
BNDARY must evaluate the right-hand boundary condition at x ¼ b.

7: G(NPDE) – real array Output

On exit: GðiÞ must contain the ith component of either GL or GR in (6) and (7), depending
on the value of IBND, for i ¼ 1; 2; . . . ;NPDE.

8: IRES – INTEGER Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, the user may set IRES to force the
integration routine to take certain actions as described below:

IRES ¼ 2

indicates to the integrator that control should be passed back immediately to the
calling (sub)program with the error indicator set to IFAIL ¼ 6.
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IRES ¼ 3

indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. The user may wish to set IRES ¼ 3 when a
physically meaningless input or output value has been generated. If the user
consecutively sets IRES ¼ 3, then D03PFF returns to the calling (sub)program with
the error indicator set to IFAIL ¼ 4.

BNDARY must be declared as EXTERNAL in the (sub)program from which D03PFF is called.
Parameters denoted as Input must not be changed by this procedure.

7: U(NPDE,NPTS) – real array Input/Output

On entry: Uði; jÞ must contain the initial value of Uiðx; tÞ at x ¼ XðjÞ and t ¼ TS; for
i ¼ 1; 2; . . . ;NPDE ; j ¼ 1; 2; . . . ;NPTS.

On exit: Uði; jÞ will contain the computed solution Uiðx; tÞ at x ¼ XðjÞ and t ¼ TS; for
i ¼ 1; 2; . . . ;NPDE; j ¼ 1; 2; . . . ;NPTS.

8: NPTS – INTEGER Input

On entry: the number of mesh points in the interval ½a; b�.
Constraint: NPTS � 3.

9: X(NPTS) – real array Input

On entry: the mesh points in the space direction. X(1) must specify the left-hand boundary, a, and
X(NPTS) must specify the right-hand boundary, b.

Constraint: Xð1Þ < Xð2Þ < . . . < XðNPTSÞ.

10: ACC(2) – real array Input

On entry: the components of ACC contain the relative and absolute error tolerances used in the local
error test in the time integration.

If Eði; jÞ is the estimated error for Ui at the jth mesh point, the error test is

Eði; jÞ ¼ ACCð1Þ � Uði; jÞ þ ACCð2Þ:
Constraint: ACCð1Þ and ACCð2Þ � 0:0 (but not both zero).

11: TSMAX – real Input

On entry: the maximum absolute step size to be allowed in the time integration. If TSMAX ¼ 0:0
then no maximum is imposed.

Constraint: TSMAX � 0:0.

12: W(NW) – real array Workspace
13: NW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which D03PFF is
called.

Constraint:

NW � ð11þ 9� NPDEÞ � NPDE� NPTSþ ð32þ 3� NPDEÞ � NPDEþ 7� NPTSþ 54.

14: IW(NIW) – INTEGER array Output

On exit: the following components of the array IW concern the efficiency of the integration.

IW(1) contains the number of steps taken in time.
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IW(2) contains the number of residual evaluations of the resulting ODE system used. One
such evaluation involves evaluating the PDE functions at all the mesh points, as well as one
evaluation of the functions in the boundary conditions.

IW(3) contains the number of Jacobian evaluations performed by the time integrator.

IW(4) contains the order of the ODE method last used in the time integration.

IW(5) contains the number of Newton iterations performed by the time integrator. Each
iteration involves residual evaluation of the resulting ODE system followed by a back-
substitution using the LU decomposition of the Jacobian matrix.

15: NIW – INTEGER Input

On entry: the dimension of the array IW.

Constraint: NIW � NPDE� NPTSþ 24.

16: ITASK – INTEGER Input

On entry: the task to be performed by the ODE integrator. The permitted values of ITASK and
their meanings are detailed below:

ITASK ¼ 1

normal computation of output values U at t ¼ TOUT (by overshooting and interpolating).

ITASK ¼ 2

take one step in the time direction and return.

ITASK ¼ 3

stop at first internal integration point at or beyond t ¼ TOUT.

Constraint: 1 � ITASK � 3.

17: ITRACE – INTEGER Input

On entry: the level of trace information required from D03PFF and the underlying ODE solver.
ITRACE may take the value �1, 0, 1, 2, or 3. If ITRACE < �1, then �1 is assumed and similarly
if ITRACE > 3, then 3 is assumed. If ITRACE ¼ �1, no output is generated. If ITRACE ¼ 0,
only warning messages from the PDE solver are printed on the current error message unit (see
X04AAF). If ITRACE > 0, then output from the underlying ODE solver is printed on the current
advisory message unit (see X04ABF). This output contains details of Jacobian entries, the nonlinear
iteration and the time integration during the computation of the ODE system. The advisory
messages are given in greater detail as ITRACE increases. Users are advised to set ITRACE ¼ 0,
unless they are experienced with the sub-chapter D02M–N of the NAG Fortran Library.

18: IND – INTEGER Input/Output

On entry: IND must be set to 0 or 1.

IND ¼ 0

starts or restarts the integration in time.

IND ¼ 1

continues the integration after an earlier exit from the routine. In this case, only the
parameters TOUT and IFAIL should be reset between calls to D03PFF.

Constraint: 0 � IND � 1.

On exit: IND ¼ 1.

19: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.
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On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then the
value 1 is recommended. Otherwise, for users not familiar with this parameter the recommended
value is 0. When the value �1 or 1 is used it is essential to test the value of IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TS � TOUT,
or TOUT� TS is too small,
or ITASK 6¼ 1, 2, or 3,
or NPTS < 3,
or NPDE < 1,
or IND 6¼ 0 or 1,
or incorrectly defined user mesh, i.e., XðiÞ � Xðiþ 1Þ for some i ¼ 1; 2; . . . ;NPTS� 1,
or NW or NIW are too small,
or IND ¼ 1 on initial entry to D03PFF,
or ACC(1) or ACCð2Þ < 0:0,
or ACC(1) or ACC(2) are both zero,
or TSMAX < 0:0.

IFAIL ¼ 2

The underlying ODE solver cannot make any further progress, with the values of ACC, across the
integration range from the current point t ¼ TS. The components of U contain the computed values
at the current point t ¼ TS.

IFAIL ¼ 3

In the underlying ODE solver, there were repeated error test failures on an attempted step, before
completing the requested task, but the integration was successful as far as t ¼ TS. The problem
may have a singularity, or the error requirement may be inappropriate. Incorrect specification of
boundary conditions may also result in this error.

IFAIL ¼ 4

In setting up the ODE system, the internal initialisation routine was unable to initialise the derivative
of the ODE system. This could be due to the fact that IRES was repeatedly set to 3 in one of the
user-supplied subroutines PDEDEF, NUMFLX or BNDARY when the residual in the underlying
ODE solver was being evaluated. Incorrect specification of boundary conditions may also result in
this error.

IFAIL ¼ 5

In solving the ODE system, a singular Jacobian has been encountered. Check the problem
formulation.

IFAIL ¼ 6

When evaluating the residual in solving the ODE system, IRES was set to 2 in at least one of the
user-supplied subroutines PDEDEF, NUMFLX or BNDARY. Integration was successful as far as
t ¼ TS.
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IFAIL ¼ 7

The values of ACC(1) and ACC(2) are so small that the routine is unable to start the integration in
time.

IFAIL ¼ 8

In one of the user-supplied routines, PDEDEF, NUMFLX or BNDARY, IRES was set to an invalid
value.

IFAIL ¼ 9

A serious error has occurred in an internal call to D02NNF. Check problem specification and all
parameters and array dimensions. Setting ITRACE=1 may provide more information. If the
problem persists, contact NAG.

IFAIL ¼ 10

The required task has been completed, but it is estimated that a small change in the values of ACC
is unlikely to produce any change in the computed solution. (Only applies when the user is not
operating in one step mode, that is when ITASK 6¼ 2.)

IFAIL ¼ 11

An error occurred during Jacobian formulation of the ODE system (a more detailed error description
may be directed to the current advisory message unit when ITRACE � 1).

IFAIL ¼ 12

Not applicable.

IFAIL ¼ 13

Not applicable.

IFAIL ¼ 14

One or more of the functions Pi;j, Di or Ci was detected as depending on time derivatives, which is

not permissible.

7 Accuracy

The routine controls the accuracy of the integration in the time direction but not the accuracy of the
approximation in space. The spatial accuracy depends on both the number of mesh points and on their
distribution in space. In the time integration only the local error over a single step is controlled and so the
accuracy over a number of steps cannot be guaranteed. The user should therefore test the effect of varying
the components of the accuracy parameter, ACC.

8 Further Comments

The routine is designed to solve systems of PDEs in conservative form, with optional source terms which
are independent of space derivatives, and optional second-order diffusion terms. The use of the routine to
solve systems which are not naturally in this form is discouraged, and users are advised to use one of the
central-difference scheme routines for such problems.

Users should be aware of the stability limitations for hyperbolic PDEs. For most problems with small
error tolerances the ODE integrator does not attempt unstable time steps, but in some cases a maximum
time step should be imposed using TSMAX. It is worth experimenting with this parameter, particularly if
the integration appears to progress unrealistically fast (with large time steps). Setting the maximum time
step to the minimum mesh size is a safe measure, although in some cases this may be too restrictive.

Problems with source terms should be treated with caution, as it is known that for large source terms stable
and reasonable looking solutions can be obtained which are in fact incorrect, exhibiting non-physical
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speeds of propagation of discontinuities (typically one spatial mesh point per time step). It is essential to
employ a very fine mesh for problems with source terms and discontinuities, and to check for non-physical
propagation speeds by comparing results for different mesh sizes. Further details and an example can be
found in Pennington and Berzins (1994).

The time taken by the routine depends on the complexity of the system and on the accuracy requested.

9 Example

For this routine two examples are presented, Section 9.1 of the documents for D03PFF and D03PFF. In
the example programs distributed to sites, there is a single example program for D03PFF, with a main
program:

* D03PFF Example Program Text
* Mark 17 Release. NAG Copyright 1995.
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)

* .. External Subroutines ..
EXTERNAL EX1, EX2

* .. Executable Statements ..
WRITE (NOUT,*) ’D03PFF Example Program Results’
CALL EX1
CALL EX2
STOP
END

The code to solve the two example problems is given in the subroutines EX1 and EX2, in D03PFF and
D03PFF respectively.

9.1 Example 1

This example is a simple first-order system which illustrates the calculation of the numerical flux using
Roe’s approximate Riemann solver, and the specification of numerical boundary conditions using
extrapolated characteristic variables. The PDEs are

@U1

@t
þ @U1

@x
þ @U2

@x
¼ 0;

@U2

@t
þ 4

@U1

@x
þ @U2

@x
¼ 0;

for x 2 ½0; 1� and t � 0. The PDEs have an exact solution given by

U1ðx; tÞ ¼
1

2
fexpðxþ tÞ þ expðx� 3tÞg þ 1

4
fsinð2�ðx� 3tÞ2Þ � sinð2�ðxþ tÞ2Þg þ 2t2 � 2xt;

U2ðx; tÞ ¼ expðx� 3tÞ � expðxþ tÞ þ 1

2
fsinð2�ðx� 3tÞ2Þ þ sinð2�ðx� 3tÞ2Þg þ x2 þ 5t2 � 2xt:

The initial conditions are given by the exact solution. The characteristic variables are 2U1 þ U2 and
2U1 � U2 corresponding to the characteristics given by dx=dt ¼ 3 and dx=dt ¼ �1 respectively. Hence a
physical boundary condition is required for 2U1 þ U2 at the left-hand boundary, and for 2U1 � U2 at the
right-hand boundary (corresponding to the incoming characteristics); and a numerical boundary condition
is required for 2U1 � U2 at the left-hand boundary, and for 2U1 þ U2 at the right-hand boundary (outgoing
characteristics). The physical boundary conditions are obtained from the exact solution, and the numerical
boundary conditions are calculated by linear extrapolation of the appropriate characteristic variable. The
numerical flux is calculated using Roe’s approximate Riemann solver: Using the notation in Section 3, the
flux vector F and the Jacobian matrix A are

F ¼ U1 þ U2

4U1 þ U2

� �
and A ¼ 1 1

4 1

� �
;

and the eigenvalues of A are 3 and �1 with right eigenvectors ½1 2�T and ½�1 2�T respectively. Using
equation (5) the �k are given by
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U1R � U1L

U2R � U2L

� �
¼ �1

1

2

� �
þ �2

�1

2

� �
;

that is

�1 ¼ 1
4
2U1R � 2U1L þ U2R � U2Lð Þ and �2 ¼ 1

4
�2U1R þ 2U1L þ U2R � U2Lð Þ:

FL is given by

FL ¼ U1L þ U2L

4U1L þ U2L

� �
;

and similarly for FR. From equation (4), the numerical flux vector is

F̂F ¼ 1
2

U1L þ U2L þ U1R þ U2R

4U1L þ U2L þ 4U1R þ U2R

� �
� 1

2
�1j3j

1

2

� �
� 1

2
�2j�1j �1

2

� �
;

that is

F̂F ¼ 1
2

3U1L � U1R þ 3
2
U2L þ 1

2
U2R

6U1L þ 2U1R þ 3U2L � U2R

� �
:

9.1.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the
Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,
the results produced may not be identical for all implementations.

SUBROUTINE EX1
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER NPDE, NPTS, NIW, NW, INT, OUTPTS
PARAMETER (NPDE=2,NPTS=101,NIW=24+NPDE*NPTS,NW=(11+9*NPDE)

+ *NPDE*NPTS+(32+3*NPDE)*NPDE+7*NPTS+54,INT=20,
+ OUTPTS=7)

* .. Scalars in Common ..
real P

* .. Local Scalars ..
real TOUT, TS, TSMAX, XX
INTEGER I, IFAIL, IND, IT, ITASK, ITRACE, J, NOP

* .. Local Arrays ..
real ACC(2), U(NPDE,NPTS), UE(NPDE,OUTPTS), W(NW),

+ X(NPTS), XOUT(OUTPTS)
INTEGER IW(NIW)

* .. External Functions ..
real X01AAF
EXTERNAL X01AAF

* .. External Subroutines ..
EXTERNAL BNDRY1, D03PFF, D03PFP, EXACT, NMFLX1

* .. Common blocks ..
COMMON /PI/P

* .. Executable Statements ..
WRITE (NOUT,*)
WRITE (NOUT,*)
WRITE (NOUT,*) ’Example 1’
WRITE (NOUT,*)

*
XX = 0.0e0
P = X01AAF(XX)
ITRACE = 0
ACC(1) = 0.1e-3
ACC(2) = 0.1e-4
TSMAX = 0.0e0
WRITE (NOUT,99996) NPTS, ACC(1), ACC(2)
WRITE (NOUT,99999)

*
* Initialise mesh ..
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*
DO 20 I = 1, NPTS

X(I) = (I-1.0e0)/(NPTS-1.0e0)
20 CONTINUE

*
* Set initial values ..

TS = 0.0e0
CALL EXACT(TS,U,NPDE,X,NPTS)

*
IND = 0
ITASK = 1

*
DO 80 IT = 1, 2

TOUT = 0.1e0*IT
IFAIL = 0

*
CALL D03PFF(NPDE,TS,TOUT,D03PFP,NMFLX1,BNDRY1,U,NPTS,X,ACC,

+ TSMAX,W,NW,IW,NIW,ITASK,ITRACE,IND,IFAIL)
*
* Set output points ..

NOP = 0
DO 40 I = 1, NPTS, INT

NOP = NOP + 1
XOUT(NOP) = X(I)

40 CONTINUE
*

WRITE (NOUT,99995) TS
*
* Check against exact solution ..

CALL EXACT(TOUT,UE,NPDE,XOUT,NOP)
DO 60 I = 1, NOP

J = 1 + INT*(I-1)
WRITE (NOUT,99998) XOUT(I), U(1,J), UE(1,I), U(2,J), UE(2,I)

60 CONTINUE
80 CONTINUE

*
WRITE (NOUT,99997) IW(1), IW(2), IW(3), IW(5)
RETURN

*
99999 FORMAT (8X,’X’,8X,’Approx U’,4X,’Exact U’,5X,’Approx V’,4X,’Exac’,

+ ’t V’)
99998 FORMAT (5(3X,F9.4))
99997 FORMAT (/’ Number of integration steps in time = ’,I6,/’ Number ’,

+ ’of function evaluations = ’,I6,/’ Number of Jacobian ’,
+ ’evaluations =’,I6,/’ Number of iterations = ’,I6,/)

99996 FORMAT (/’ NPTS = ’,I4,’ ACC(1) = ’,e10.3,’ ACC(2) = ’,e10.3,/)
99995 FORMAT (/’ T = ’,F6.3,/)

END
*

SUBROUTINE BNDRY1(NPDE,NPTS,T,X,U,IBND,G,IRES)
* .. Scalar Arguments ..

real T
INTEGER IBND, IRES, NPDE, NPTS

* .. Array Arguments ..
real G(NPDE), U(NPDE,3), X(NPTS)

* .. Local Scalars ..
real C, EXU1, EXU2

* .. Local Arrays ..
real UE(2,1)

* .. External Subroutines ..
EXTERNAL EXACT

* .. Executable Statements ..
IF (IBND.EQ.0) THEN

CALL EXACT(T,UE,NPDE,X(1),1)
C = (X(2)-X(1))/(X(3)-X(2))
EXU1 = (1.0e0+C)*U(1,2) - C*U(1,3)
EXU2 = (1.0e0+C)*U(2,2) - C*U(2,3)
G(1) = 2.0e0*U(1,1) + U(2,1) - 2.0e0*UE(1,1) - UE(2,1)
G(2) = 2.0e0*U(1,1) - U(2,1) - 2.0e0*EXU1 + EXU2

ELSE
CALL EXACT(T,UE,NPDE,X(NPTS),1)
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C = (X(NPTS)-X(NPTS-1))/(X(NPTS-1)-X(NPTS-2))
EXU1 = (1.0e0+C)*U(1,2) - C*U(1,3)
EXU2 = (1.0e0+C)*U(2,2) - C*U(2,3)
G(1) = 2.0e0*U(1,1) - U(2,1) - 2.0e0*UE(1,1) + UE(2,1)
G(2) = 2.0e0*U(1,1) + U(2,1) - 2.0e0*EXU1 - EXU2

END IF
RETURN
END

*
SUBROUTINE NMFLX1(NPDE,T,X,ULEFT,URIGHT,FLUX,IRES)

* .. Scalar Arguments ..
real T, X
INTEGER IRES, NPDE

* .. Array Arguments ..
real FLUX(NPDE), ULEFT(NPDE), URIGHT(NPDE)

* .. Executable Statements ..
FLUX(1) = 0.5e0*(-URIGHT(1)+3.0e0*ULEFT(1)+0.5e0*URIGHT(2)

+ +1.5e0*ULEFT(2))
FLUX(2) = 0.5e0*(2.0e0*URIGHT(1)+6.0e0*ULEFT(1)-URIGHT(2)

+ +3.0e0*ULEFT(2))
RETURN
END

*
SUBROUTINE EXACT(T,U,NPDE,X,NPTS)

* Exact solution (for comparison and b.c. purposes)
* .. Scalar Arguments ..

real T
INTEGER NPDE, NPTS

* .. Array Arguments ..
real U(NPDE,*), X(*)

* .. Scalars in Common ..
real P

* .. Local Scalars ..
real X1, X2
INTEGER I

* .. Intrinsic Functions ..
INTRINSIC EXP, SIN

* .. Common blocks ..
COMMON /PI/P

* .. Executable Statements ..
DO 20 I = 1, NPTS

X1 = X(I) + T
X2 = X(I) - 3.0e0*T
U(1,I) = 0.5e0*(EXP(X1)+EXP(X2)) + 0.25e0*(SIN(2.0e0*P*X2**2)

+ -SIN(2.0e0*P*X1**2)) + 2.0e0*T**2 - 2.0e0*X(I)*T
U(2,I) = EXP(X2) - EXP(X1) + 0.5e0*(SIN(2.0e0*P*X2**2)

+ +SIN(2.0e0*P*X1**2)) + X(I)**2 + 5.0e0*T**2 -
+ 2.0e0*X(I)*T

20 CONTINUE
RETURN
END

9.1.2 Program Data

None.

9.1.3 Program Results

D03PFF Example Program Results

Example 1

NPTS = 101 ACC(1) = 0.100E-03 ACC(2) = 0.100E-04

X Approx U Exact U Approx V Exact V

T = 0.100
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0.0000 1.0615 1.0613 -0.0155 -0.0150
0.2000 0.9892 0.9891 -0.0953 -0.0957
0.4000 1.0826 1.0826 0.1180 0.1178
0.6000 1.7001 1.7001 -0.0751 -0.0746
0.8000 2.3959 2.3966 -0.2453 -0.2458
1.0000 2.1029 2.1025 0.3760 0.3753

T = 0.200

0.0000 1.0957 1.0956 0.0368 0.0370
0.2000 1.0808 1.0811 0.1826 0.1828
0.4000 1.1102 1.1100 -0.2935 -0.2938
0.6000 1.6461 1.6454 -1.2921 -1.2908
0.8000 1.7913 1.7920 -0.8510 -0.8525
1.0000 2.2050 2.2050 -0.4222 -0.4221

Number of integration steps in time = 56
Number of function evaluations = 229
Number of Jacobian evaluations = 7
Number of iterations = 143

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
- 1 . 5

- 1 . 0

- 0 . 5

0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

X

U 1

U 2

×××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××

×××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××

9.2 Example 2

This example is an advection-diffusion equation in which the flux term depends explicitly on x:

@U

@t
þ x

@U

@x
¼ �

@2U

@x2
;

for x 2 ½�1; 1� and 0 � t � 10. The parameter � is taken to be 0:01. The two physical boundary
conditions are Uð�1; tÞ ¼ 3:0 and Uð1; tÞ ¼ 5:0 and the initial condition is Uðx; 0Þ ¼ xþ 4. The
integration is run to steady state at which the solution is known to be U ¼ 4 across the domain with a
narrow boundary layer at both boundaries. In order to write the PDE in conservative form, a source term
must be introduced, i.e.

@U

@t
þ @ðxUÞ

@x
¼ �

@2U

@x2
þ U:

As in Example 1, the numerical flux is calculated using the Roe approximate Riemann solver. The
Riemann problem to solve locally is

@U

@t
þ @ðxUÞ

@x
¼ 0:

The x in the flux term is assumed to be constant at a local level, and so using the notation in Section 3,
F ¼ xU and A ¼ x. The eigenvalue is x and the eigenvector (a scalar in this case) is 1. The numerical
flux is therefore
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F̂F ¼ xUL if x � 0;
xUR if x < 0:

�

9.2.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the
Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,
the results produced may not be identical for all implementations.

SUBROUTINE EX2
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER NPDE, NPTS, NIW, NW, OUTPTS
PARAMETER (NPDE=1,NPTS=151,NIW=24+NPDE*NPTS,NW=(11+9*NPDE)

+ *NPDE*NPTS+(32+3*NPDE)*NPDE+7*NPTS+54,OUTPTS=7)
* .. Local Scalars ..

real TOUT, TS, TSMAX
INTEGER I, IFAIL, IND, IT, ITASK, ITRACE

* .. Local Arrays ..
real ACC(2), U(NPDE,NPTS), W(NW), X(NPTS),

+ XOUT(OUTPTS)
INTEGER IW(NIW)

* .. External Subroutines ..
EXTERNAL BNDRY2, D03PFF, NMFLX2, PDEDEF

* .. Executable Statements ..
WRITE (NOUT,*)
WRITE (NOUT,*)
WRITE (NOUT,*) ’Example 2’
WRITE (NOUT,*)

*
ITRACE = 0
ACC(1) = 0.1e-4
ACC(2) = 0.1e-4
WRITE (NOUT,99998) NPTS, ACC(1), ACC(2)

*
* Initialise mesh ..
*

DO 20 I = 1, NPTS
X(I) = -1.0e0 + 2.0e0*(I-1.0e0)/(NPTS-1.0e0)

20 CONTINUE
*
* Set initial values ..

DO 40 I = 1, NPTS
U(1,I) = X(I) + 4.0e0

40 CONTINUE
*

IND = 0
ITASK = 1
TSMAX = 0.2e-1

*
* Set output points ..

XOUT(1) = X(1)
XOUT(2) = X(4)
XOUT(3) = X(37)
XOUT(4) = X(76)
XOUT(5) = X(112)
XOUT(6) = X(148)
XOUT(7) = X(151)

*
WRITE (NOUT,99996) (XOUT(I),I=1,OUTPTS)

*
* Loop over output value of t
*

TS = 0.0e0
TOUT = 1.0e0
DO 60 IT = 1, 2

IF (IT.EQ.2) TOUT = 10.0e0
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IFAIL = 0
*

CALL D03PFF(NPDE,TS,TOUT,PDEDEF,NMFLX2,BNDRY2,U,NPTS,X,ACC,
+ TSMAX,W,NW,IW,NIW,ITASK,ITRACE,IND,IFAIL)

*
WRITE (NOUT,99999) TS
WRITE (NOUT,99995) U(1,1), U(1,4), U(1,37), U(1,76), U(1,112),

+ U(1,148), U(1,151)
60 CONTINUE

*
WRITE (NOUT,99997) IW(1), IW(2), IW(3), IW(5)
RETURN

*
99999 FORMAT (’ T = ’,F6.3)
99998 FORMAT (/’ NPTS = ’,I4,’ ACC(1) = ’,e10.3,’ ACC(2) = ’,e10.3,/)
99997 FORMAT (’ Number of integration steps in time = ’,I6,/’ Number ’,

+ ’of function evaluations = ’,I6,/’ Number of Jacobian ’,
+ ’evaluations =’,I6,/’ Number of iterations = ’,I6,/)

99996 FORMAT (1X,’X ’,7F9.4,/)
99995 FORMAT (1X,’U ’,7F9.4,/)

END
*

SUBROUTINE PDEDEF(NPDE,T,X,U,UX,P,C,D,S,IRES)
* .. Scalar Arguments ..

real T, X
INTEGER IRES, NPDE

* .. Array Arguments ..
real C(NPDE), D(NPDE), P(NPDE,NPDE), S(NPDE),

+ U(NPDE), UX(NPDE)
* .. Executable Statements ..

P(1,1) = 1.0e0
C(1) = 0.1e-1
D(1) = UX(1)
S(1) = U(1)
RETURN
END

*
SUBROUTINE BNDRY2(NPDE,NPTS,T,X,U,IBND,G,IRES)

* .. Scalar Arguments ..
real T
INTEGER IBND, IRES, NPDE, NPTS

* .. Array Arguments ..
real G(NPDE), U(NPDE,3), X(NPTS)

* .. Executable Statements ..
IF (IBND.EQ.0) THEN

G(1) = U(1,1) - 3.0e0
ELSE

G(1) = U(1,1) - 5.0e0
END IF
RETURN
END

*
SUBROUTINE NMFLX2(NPDE,T,X,ULEFT,URIGHT,FLUX,IRES)

* .. Scalar Arguments ..
real T, X
INTEGER IRES, NPDE

* .. Array Arguments ..
real FLUX(NPDE), ULEFT(NPDE), URIGHT(NPDE)

* .. Executable Statements ..
IF (X.GE.0) THEN

FLUX(1) = X*ULEFT(1)
ELSE

FLUX(1) = X*URIGHT(1)
END IF
RETURN
END

9.2.2 Program Data

None.
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9.2.3 Program Results

D03PFF Example Program Results

Example 2

NPTS = 151 ACC(1) = 0.100E-04 ACC(2) = 0.100E-04

X -1.0000 -0.9600 -0.5200 0.0000 0.4800 0.9600 1.0000

T = 1.000
U 3.0000 3.6221 3.8087 4.0000 4.1766 4.3779 5.0000

T = 10.000
U 3.0000 3.9592 4.0000 4.0000 4.0000 4.0408 5.0000

Number of integration steps in time = 503
Number of function evaluations = 1190
Number of Jacobian evaluations = 28
Number of iterations = 1035
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